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Molecular dynamics simulations of self-avoiding tethered membranes with attractive
interactions: Search for a crumpled phase
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The equilibrium structure of closed self-avoiding tethered vesicles with attractive interactions is investigated
by molecular dynamics simulations. The vesicles are constructed by connecting linear chains of n=4 or 8
monomers to form closed membranes with as many as 16 002 monomers. For n=4, the transition from a
high-temperature flat phase to a low-temperature collapsed phase is discontinuous, with no evidence for an
intermediate crumpled phase. However, for n=8 the transition is either continuous or very weakly first order.
Assuming the transition is continuous, a scaling analysis suggests that at the transition there is an intermediate
state which has a fractal dimension d;=2.4, somewhat smaller than but close to the value predicted by the

Flory theory for a crumpled membrane.
PACS number(s): 64.60.Cn, 05.40.+j, 68.35.Rh

The properties of two-dimensional tethered membranes
embedded into three dimensions have been studied exten-
sively since they were introduced by Kantor, Kardar, and
Nelson [1]. These membranes appear in both a biological
context, such as the red blood cell skeleton [2,3], and in a
materials context, such as the two-dimensional polymer
membranes recently synthesized by Stupp et al. [4] and the
graphite oxide crystalline membranes studied by Wen et al.
[5] and Spector et al. [6]. Kantor, Kardar, and Nelson [1]
suggested, based on a simple Flory-level theory, that in the
presence of only excluded volume interactions, a tethered
membrane would crumple and that its size R ; would scale as
RdG/ ~N, where N is the number of monomers in the mem-
brane and d; is the fractal dimension. They found that for
two-dimensional membranes embedded into three dimen-
sions, dy=2.5. This conclusion was supported by renormal-
ization group calculations [1,7,8] which suggested that the
flat phase was unstable in d=3 and by Monte Carlo simula-
tions on small systems [1]. Nelson and Peliti [9] found that at
low temperatures a stable flat phase exists. However, more
extensive computer simulations [10—19] on large systems
have since shown convincingly that, in fact, in the presence
of only excluded volume interactions, tethered membranes
do not crumple but remain flat (R5~N). This lack of a
crumpling transition in d=3 has been explained [14] in
terms of an implicit bending rigidity which is induced by the
self-avoidance requirement even when no such term is
present in the microscopic Hamiltonian. Then, if bending
rigidity is relevant, one cannot expect the Flory theory to
work. An alternative explanation by Goulian [20], who used
a Gaussian variational approximation, and Le Doussal [21],
who did an expansion in large embedding space dimension
d, is that the flat phase is stable for d=3 and two-
dimensional membranes crumple only for d>4. This result
is in agreement with earlier molecular dynamics simulations
of Grest [18]. In a related calculation, Guitter and Palmeri
[22] also using a variational approach found that the mem-
brane can crumple only for d>3.
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While it is now clear that two-dimensional tethered mem-
branes with only excluded volume interactions remain flat,
there have been some suggestions that the addition of attrac-
tive interactions may balance the implicit bending rigidity
produced by the self-avoidance and produce a crumpled
phase at intermediate temperatures. Abraham and Nelson
[14] found in their molecular dynamics simulations that the
introduction of attractive interactions between monomers
leads to a collapsed membrane with fractal dimension 3 at
sufficiently low temperature. Later Abraham and Kardar [23]
found that for open membranes with attractive interactions,
there is a well defined sequence of folding transitions with
decreasing temperature. While they did not find any evidence
for an intermediate crumpled phase, their scaling analysis,
based on a Landau theory, suggested that such a state could
exist. Following this work, Liu and Plischke [24] carried out
Monte Carlo simulations for a similar model and found for
small systems (N=<817) that the membranes did not undergo
a series of folding transitions but instead between the high-
temperature flat phase and the low-temperature collapsed
phase there was an intermediate crumpled phase. This
crumpled phase seemed to exist over a range of temperatures
and was characterized by a fractal dimension d;~2.5. This
interesting possibility of finally locating the elusive crumpled
membrane phase led us to carry out extensive molecular dy-
namics simulations on tethered membranes with attractive
interactions. To avoid the possibility of a folding transition,
we studied a system of N monomers constructed from short,
linear chains of length n of monomers which are connected
to form a closed membrane [19]. This gives the model some
local flexibility and reduces finite size effects since there is
no free perimeter. In contrast to the findings of Liu and Plis-
chke, our results do not support the existence of an interme-
diate range of temperatures where the membrane is
crumpled. Instead, we find for short monomer chains, n=4,
a first order transition from the high-temperature flat phase
directly to the low-temperature collapsed phase. For longer
polymer chains between the vertices, n =8, we find that the
transition is either continuous or weakly first order; it is dif-
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FIG. 1. Illustration of the initial state for a membrane of size
N=9002 with n=8 additional monomers between each vertex.
This system contains 1080 edges and 720 triangular faces. Note that
the bond lengths are not exactly the same, as the points have been
projected onto the surface of a sphere. If all bond lengths were
equal, the membrane would have the shape of an icosahedron.

ficult from the present simulations to distinguish. However,
assuming that the transition is continuous, we can carry out a
scaling analysis, similar to that for a ® point for linear
chains. At the critical temperature, this analysis suggests that
the membrane has a fractal dimension d,=2.4, slightly less
than but quite close to the Flory theory prediction for a
crumpled membrane. Our results for smaller systems are
consistent with those of Liu and Plischke [24], in that they
also suggest a possible range of intermediate temperatures
where the membranes appear to be crumpled with d;=2.5.
However, because we were able to simulate significantly
larger systems than they could, we were able to show that
there is in fact no intermediate regime.

Molecular dynamics simulations were performed on the
model for closed membranes used previously by us [19] to
model the red blood cell skeleton in a good solvent [3]. Each
membrane consists of a two-dimensional triangular array of
N monomers of mass m connected to form a closed vesicle,
as shown in Fig. 1. This was done by constructing an icosa-
hedron with n,, monomers per edge. An additional » mono-
mers connected linearly were then added between each node.
All but 12 of the vertices are sixfold coordinated. The re-
maining 12 are fivefold coordinated, which is necessary to
close the wvesicle. The total number of monomers
N=10n3(1+3n)+2 with 30n] edges of length
Ly=ny(n+1) and 20”:‘2/ faces. For the present studies, we
used n=4 with 1172<N=<15732 and n=8 with 1002
<N=16002. All monomers interact through a shifted
Lennard-Jones potential which is terminated at separations
greater than 2.50, where o is the Lennard-Jones unit of
length and corresponds to the separation where the interac-
tion is zero. For monomers which are tethered (nearest
neighbors) there is an additional attractive interaction as de-
scribed elsewhere [18]. No explicit bending terms are in-
cluded. By changing the temperature 7, one effectively
changes the solvent quality. For high 7', the attractive part of
the interaction is irrelevant and the membrane is in its “flat”
state, in which the mean squared radius of gyration (ch)
scales as N. Since the membrane is closed, the flat phase is
actually a spherical shell. As T decreases, the attractive part
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FIG. 2. Mean square radius of gyration (RE)/N" (v=0.8) ver-
sus N for (a) n=4 and (b) n=8 for a variety of temperatures,
kpT/€=3.5 (@), 3.25 (A), 3.0 (O). 2.75 (X), 2.5 (0), and 2.0
().

of the interaction begins to play a role. For low T, the mem-
brane collapses into a compact phase characterized by
(RE)~N?3. The interesting question is what happens in be-
tween these two phases.

The equations of motion were integrated with a velocity-
Verlet algorithm [25], with a time step Ar=(0.006—0.008)
7. The higher T, the smaller At. Here 7= o(m/€)'?, where
€ is the Lennard-Jones unit of energy. Since for this model
the ® point for a linear polymer chain is (3.0=0.1)€/kp
[26], we first scanned T from 4.0€/kp to 2.0€/ky for small N
to locate the approximate transition region. We found that the
transition was in fact close to the ® temperature of a linear
chain. We then carried out long runs (2-5)X 10°Ar after
equilibrium was reached for a variety of 7 and N. Because
of the relatively dense packing of these membranes, reaching
equilibrium was a very slow process. For our largest system,
more than 3 X 10° time steps were often needed just to reach
equilibrium after changing 7. On our Cray XMP or Silicon
Graphics Challenge computers, several of these equilibra-
tions runs took more than 100 hours of CPU time each. Most
of the results were obtained on cooling from the previous
higher temperature state. However, in the vicinity of the tran-
sition, additional runs were made on heating from lower tem-
perature.

In the crumpled phase, should it exist, the mean squared
radius of gyration is expected to scale as (R?;)/N ¥, where
v=2/d,. In the Flory theory, v= % In the collapsed phase,
v=12and in the flat phase, v=1.0. By plotting (R%)/N" ver-
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FIG. 3. Scaling plot of (R%)/N” versus tN® for n=8, where
v=0.85, $=1.0, and T.=2.89¢/ky. Here t=(T—T_)/T. and the
symbols are the same as in Fig. 2.

sus N on a log-log plot for these three values of v, it is not
difficult to distinguish the three phases. In Fig. 2, we show
our results for »=0.8 for the two values of n studied. Note
that for high T, (R3)/N°® clearly increases with increasing
N, while for low T, (R2)/N°® decreases. In the intermediate
range, there is strong hysteresis for n =4. In this regime, both
the low T collapsed phase and the high T flat phase were
stable as far as we could tell from the length of runs carried
out. For n=4, both states were stable at T=3.25¢/kp for
N=2082, while for T=3.0€/kg, a similar result was ob-
served for N=8322, suggesting a first order transition. For
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FIG. 4. A typical configuration and a cross section through the
center of the membrane for a closed self-avoiding tethered mem-
brane with N=16 002 monomers for (a) T=3.0¢/kg, which is in
the high-temperature flat phase, and (b) T=2.5¢/kg , which is in the
collapsed phase.

In qo

FIG. 5. Static structure factor S(q) for the N=16 002 (n=38)
membranes for kzT/e=3.0 (O) and 2.5 (0O). Data for
T=2.5€¢/kp shifted vertically for clarity.

n=2§, the transition is continuous or nearly so. Though the
relaxation times to go from a high-temperature flat phase to
the low-temperature collapsed phase in the vicinity of the
transition were very long, no hysteresis was observed for this
case. At T=2.75€/kg, for example, it took more than
3 X 10°At for the configuration to go from an initial flat state
to a collapsed one for N=9002. For 16 002, the time was so
long that we could not follow the transformation completely.
Further analysis of the low-temperature data for both cases
indicates that the membranes are collapsed and
v=0.67%0.02. For higher temperatures the data are consis-
tent with v=1, though the best fit to the data for the range N
studied is somewhat smaller, 0.95. This is surely a finite size
effect and has been observed in previous simulations of ex-
cluded volume membranes. These results suggest a first or-
der transition at approximately 3.25¢/kp for n=4 and a
continuous or weakly first order tramsition for T
~ (2.85-2.90) €/kg for n=38. However, due to the strong
hysteresis for n=4, an exact determination of the transition
temperature in this case is not possible.

To try to help determine whether the transition for =8 is
continuous or not, we did a scaling analysis of the data, in
analogy to that done for the ® point for linear chains. In that
case, the ® temperature is a tricritical point separating the
self-avoiding random walk, high T phase, and the collapsed,
low T phase. In the vicinity of the ® temperature, (RZ) can
be written in a scaling form. Adapting the same general
form, we scaled the data in Fig. 2(b) as

(REY=N"f(tN*?), 1)

where t=(T—T.)/T.. This scaling form has three un-
knowns, the two exponents v and ¢ and the critical tempera-
ture T, . Here v is for the intermediate phase. While T, and
v are both bounded in a relatively narrow range, nothing is
known about the crossover exponent ¢. The scaling function
f(x) is such that f(x)~x1~® for >0, f(x)=1 for t=0,
and f(x)~x*3~"/¢ for t<0. In Fig. 3, we show a scaling
plot of (RZ)/N", with »=0.85 and ¢=1.0. Note that the
data scale reasonably well and are consistent with a continu-
ous transition. From a number of such plots, we find that the
data scale reasonably well for »=0.85+0.02 and
¢$=1.00%=0.05, though not with »=0.80. The data seem to
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support the point of view that this system has a critical point
at which the implicit bending rigidity coming from the ex-
cluded volume interactions is balanced by the attractive in-
teractions, giving rise to a crumpled state with d; very close
to 2.4. Of course this analysis does not rule out a weak first
order transition.

In Fig. 4, a typical configuration for our largest mem-
brane, N=16 002, for n=28 is shown for two values of T,
one above T, and the other below. Also shown is a cross
section through the center of the membrane. Note that the
configuration for T=3.0€/kp, which is the flat phase, is a
spherical shell. This configuration is very similar to that ob-
tained earlier by us [19] in a very good solvent (a purely
repulsive interaction), except that the thickness of the shell is
somewhat larger and more dense. This is in contrast with the
configuration at T=2.5€/kg, which is in the collapsed
phase. This configuration is much more homogeneous in
density, though there remains a region in the interior which is
monomer free. At even lower temperatures, this shell fills in
completely. While the configurations for the two tempera-
tures are markedly different, the static structure functions
S(q) over much of the range of wave vector g are not. S(q)
is defined by

1 .
M®=N<Eewmﬁv, (2)
i

where the angle brackets represent a configurational average
taken every 2000A¢ and averaged over 20 random orienta-
tions for each g=|q|. Since both membranes are nearly
spherical, there is extra structure for small g, not seen in
open membranes. For large g, S(g)~q > as one would ex-
pect for a collapsed membrane. As seen in Fig. 5, even
though T=3.0€/kp is in the flat phase, the high g range of
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S(q) it is not very different from that for 7=2.5. This
should not be too surprising since in this high range of g,
S(g) is dominated by correlations at short distance and is
strongly influenced by the dense region around the shell. The
expected scaling S(q)~¢q 2 for a flat phase is obscured by
the oscillations coming from the low g oscillations. Similar
results were found for these membranes in a very good sol-
vent (purely repulsive interactions) in Ref. [19].

In summary, we have shown that attractive interactions
between monomers in a two-dimensional tethered membrane
give rise either to a first order phase transformation from the
high T flat phase and the low T collapsed phase for short
polymer chains between the vertices (n=4) or to possibly a
continuous transition for longer strands (n=38), the differ-
ence being in the local flexibility of the membrane. For the
tethered membrane model studied here, in which a closed
vesicle is constructed from short linear chain segments, the
sequence of folding transitions observed by Abraham and
Kardar [23] for an open membrane with =0 does not occur.
The introduction of linear chain segments between the verti-
ces allows one to study the transition from the flat phase to
the collapsed phase directly. The first order transition for
n=4 is consistent with these earlier results of Abraham and
Kardar, in that the transition from the flat to the folded state
was also discontinuous. For small n, the introduction of
holes in the membrane gives the membrane enough local
flexibility to avoid the folding transitions but not enough to
make the transition continuous. For large n, the attractive
interactions more exactly balance the inherent bending rigid-
ity, giving rise to either a continuous or weakly first order
transition. To distinguish these two possibilities, simulations
on systems with both large N and n, which are not feasible at
this time, are necessary.

We thank D. R. Nelson for helpful discussions.
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FIG. 4. A typical configuration and a cross section through the
center of the membrane for a closed self-avoiding tethered mem-
brane with N= 16 002 monomers for (a) T=3.0€/kp, which is in
the high-temperature flat phase, and (b) T=2.5€/kj , which is in the
collapsed phase.



